[1] Monsell S. Task switching. Trends in Cognitive Sciences. 2003, 7(3): 134-140 [2] Logan G D. Executive control of thought and action: In search of the wild homunculus. Current Directions in Psychological Science, 2003, 12(2): 45-48 [3] Jersild A T. Mental set and shift. Archives of Psychology. 1927, 89: 5-82 [4] Rogers R D, Monsell S. Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General. 1995, 124(2): 207-231 [5] Allprot D A, Styles E A, Hsieh S. Shifting intentional set: Exploring the dynamic control of tasks//Umilta C, Moscovith M. Attention and Performance, XV, Hillsdale, NJ: Erlbaum. 1994, 421-452 [6] Meiran N, Chorev Z, Sapir A. Component processes in task switching. Cognitive Psychology. 2000, 41(3): 211-253 [7] Monsell S, Mizon G A. Can the task-cuing paradigm measure an endogenous task-set reconfiguration process? Journal of Experimental Psychology: Human Perception and Performance. 2006, 32(3): 493-516 [8] Poulsen C, Luu P, Davey C, et al. Dynamics of task sets: Evidence from dense-array event-related potentials. Cognitive Brain Research, 2005, 24(1): 133-154 [9] Sohn M-H, Ursu S, Anderson J R, et al. The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the national academy of sciences of the United States of America, 2000, 97(24): 13448-13453 [10] Rubinstein J S, Meyer D E, Evans J E. Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance. 2001, 27(4): 763-797 [11] Karayanidis F, Coltheart M, Michie P T, et al. Electrophysiological correlates of anticipatory and post-stimulus components of task switching. Psychophysiology, 2003, 40(3): 329-348 [12] Nicholson R, Karayanidis F, Poboka D, et al. Electrophysiological correlates of anticipatory of task switching processes. Psychophysiology, 2005, 42(5): 540-554 [13] Aron A R, Monsell S, Sahakian B J, et al. A componential analysis of task-switching deficits associated with lesion of left and right frontal cortex. Brain, 2004, 127(7): 1561-1573 [14] Hubner M, Kluwe R H, Luna-Rodriguez A, et al. Task preparation and stimulus-evoked competition. Acta psychological, 2004, 115(2/3): 211-234 [15] Nicholson R, Karayanidis F, Davies A, et al. Components of task-set reconfiguration: Differential effects of ‘switch-to’ and ‘switch-away’ cues. Brain research, 2006, 1121(1): 160-176 [16] De Jong R. An intention-activation account of residual switch costs//Monsell S, Driver J. Control of Cognitive Processes: Attention and Performance XVIII, Cambridge, Massachusetts. 2000, 357-376 [17] Mayr U, Kliegl R. Differential effects of cue changes and task changes on task-set selection costs. Journal of Experimental Psychology: Learning, Memory, and Cognition. 2003, 29(3):362-372 [18] Sohn M H, Anderson J R. Task preparation and task repetition: Two-component model of task switching. Journal of Experimental Psychology: General. 2001, 130(4): 764-778 [19] Goffaux P, Phillips N A, Sinai M, et al. Behavioural and electrophysiological measures of task switching during single and mixed-task conditions. Biological Psychology, 2006, 72(3): 278-290 [20] Allport A, Wylie G. Task switching, stimulus-response bindings and negative priming//Monsell S, Driver J. Control of Cognitive Processes: Attention and Performance XVIII, Cambridge, Massachusetts. 2000, 35-70 [21] Meuter R F I, Allport A. Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 1999, 40(1): 25-40 [22] Mayr U, Keele S W. Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General. 2000, 129(1): 4-26 [23] Swainson R, Cunnington R, Jackson G M, et al. Cognitive control mechanisms revealed by ERP and fMRI: Evidence from repeated task-switching. Journal of Cognitive Neuroscience, 2003, 15(6): 785-799 [24] Ruthruff E, Remington R W, Johnston J C. Switching between simple cognitive tasks: The interaction of top-down and bottom-up factors. Journal of Experimental Psychology: Human Perception and Performance, 2001, 27(6): 1404-1419 [25] Koch I. Sequential task predictability in task switching. Psychonomic Bulletin and Review. 2005, 12(1): 107-112 [26] Hsieh S. The lateralized readiness potential and P300 of stimulus-set switching. International Journal of Psychophysiology, 2006, 60(3): 284-291 [27] Hsieh S, Chen P. The effect of task preparation in task switching as reflected on lateralized readiness potential. International Journal of Psychophysiology, 2007, 63(1): 98-104 [28] Brass M, Cramon D Y. The role of the frontal cortex in task preparation. Cerebral Cortex, 2002, 12(9): 908-914 [29] Koch I, Phillipp A M. Effects of response selection on the task repetition benefit in task switching. Memory and Cognition. 2005, 33(4): 624-634 [30] Philipp A M, Jolicoeur P, Falkenstein M, et al. Response selection and response execution in task switching: evidence from a Go-signal paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2007, 33(6): 1062-1075 [31] Hsieh S, Liu L C. The nature of switch cost: task set configuration or carry-over effect? Cognitive Brain Research, 2005, 22(2): 165-175 [32] Waszak F, Hommel B, Allport A. Task-switching and long-term priming: Role of episodic stimulus-task bindings in task-shift costs. Cognitive Psychology, 2003, 46: 361-413 [33] Koch I, Allport A. Cue-based preparation and stimulus-based priming of tasks in task switching. Memory and Cognition, 2006, 34(2): 433-444 [34] Hsieh S. Two-component processes in switching attention: A study of event-related potentials. Perceptual and Motor Skills, 2002, 94(2): 1168-1176 |