[1] 杨亦鸣, 曹明, 沈兴安. 国外大脑词库研究概观. 当代语言学, 2001, 3: 90~108 [2] Just M A, Carpenter P A. The Psychology of Reading and Language Comprehension. Boston: Allyn & Bacon press, 1987 [3] Breedin S D, Saffran E M, Coslett H B. Reversal of the concreteness effect in a patient with semantic dementia. Congitive Neuropsychology, 1994, 11: 617~660 [4] Warrintgon E K. Concrete word dyslexia. British Journal of Psychology, 1981, 72: 175~196 [5] Dehaene S. Electrophysiological evidence for category-specific word processing in the normal human brain. Neuroreport, 1995, 6(16): 2153~2157 [6] Barbarotto R, Capitani E, Laiacona M. Living musical instruments and inanimate body parts? Neuropsychologia, 2001, 39(4): 406~414 [7] Caramazza A, Hillis A E. Lexical organization of nouns and verbs in the brain. Nature, 1991, 349: 788~790 [8] Tyler L K, Moss H E. Towards a distributed account of conceptual knowledge. Trends in Cognitive Sciences, 2001, 5(6): 244~252 [9] Goodglass H, Klein B, Carey P, Jones K. Specific semantic word categories in aphasia. Cortex, 1966, 2: 74~89 [10] Warrington E K, McCarthy R. Category specific access dysphasia. Brain, 1983, 106: 859~878 [11] Warrington E K, Shallice T. Categories specific semantic impairments. Brain, 1984, 107: 829~853 [12] Pietrini V, Nertempi P, Vaglia A, et al. Recovery from herpes simplex encephalitis: Selective impairment of specific semantic categories with neuroradiological correlation. Journal of Neurology, Neurosurgery and Psychiatry, 1988, 51: 1284~1293 [13] Caramazza A, Shelton J R. Domain-specific knowledge systems in the brain: the animate-inanimate distinction. Journal of Cognitive Neuroscience, 1998, 10: 1~35 [14] Sacchett C, Humphreys G W. Calling a squirrel a squirrel but a canoe a wigwam: A category specific deficit for artifactual objects and body parts. Cognitive Neuropsychology, 1992, 9: 73~86 [15] Silvery M C, Gainotti G. Interact on between vision and language in category specific semantic impairment. Cognitive Neuropsychology, 1988, 5: 677~709 [16] Satori G, Job R. The oyster with four legs: a neuropsychological study on the interaction of visual and semantic information. Cognitive Neuropsychology, 1988, 5: 105~132 [17] Martin A, Wiggs C L, Ungerleider L G, et al. Neural correlates of category-specific knowledge. Nature, 1996, 379: 649~652 [18] De R E, Lucchelli F. Are semantic systems separately represented in the brain? The case of living category impairment. Cortex, 1994, 30: 3~25 [19] Hart J, Gordon B. Neural subsystems for knowlege. Nature, 1992, 359: 60~64 [20] Lambon-Ralph M A, Howard D, Nightingale G, et al. Are living and non-living category-specific deficits causally linked to impaired perceptual or associative knowledge? Evidence from a category-specific double dissociation. Neurocase, 1998, 4: 311~338 [21] Tyler L K, Moss H E, Durrant-Peatfield M R, et al. Conceptual structure and the structure of concepts: a distributed account of cateory-specific deficits. Brain and Language, 2000, 75(2): 195~231 [22] Hillis A E, Caramazza A. Category-specific naming and comprehension impairment: a double dissociation. Brain and Language, 1991, 114: 2081~2094 [23] Laiacona M, Capitani E, Barbarotto R. Semantic category dissociations:a longitudinal study of two cases. Cortex, 1997, 33: 441~461 [24] Price C J. The functional anatomy of word comprehension and production. Trends in Cognitive Sciences, 1998, 2(8): 281~287 [25] Cabeza R, Nyberg L. Imaging cognition Ⅱ: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 2000, 12(1): 1~47 [26] Gainotti G. What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex, 2000, 36(4): 539~559 [27] Damasio H, Grabowski T J, Tranel D, Hichwa R D, Damasio A R. A neural basis for lexical retrieval. Nature, 1996, 380: 499~505 [28] Moore C J, Price C J. A functional neuroimaging study of the variables that generate category-specific object processing differences. Brain, 1999, 122: 943~962 [29] Thompson-Schill S L, D'Esposito M, Aguirre G K, et al. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Neurobiology, 1997, 94: 14792~14797 [30] Gabrielli J D E, Poldrack R A, Desmond J E. The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 906~913 [31] Hagoort P. Semantic priming in Broca's aphasia at a short SOA: no support for an automatic access deficit. Brain and Language, 1997, 56: 287~300 [32] Fiez A. Phonology, semantics and the role of the left inferior prefrontal cortex. Human Brain Mapping, 1997, 5: 79~83 [33] Ishai A, Ungerleider L G, Martin, A, et al. Distributed representation of objects in the human ventral visual pathway. Neurobiology, 1999, 96(16): 9379~9384 [34] Mesulam M M. From sensation to cognition. Brain, 1998, 121(Pt6): 1013~1052 [35] Rossion B, Joyce C A, Cottrell G W, et al. Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neuroimage, 2003, 20(3): 1609~1624 [36] Kiefer M. Perceptual and semantic sources of category-specific effects: event-related potentials during picture and word categorization. Memory & Cognition, 2001, 29(1): 100~116 [37] Mangun G R, Hillyard S A. Modulation of sensoryevoked brain potentials provide evidence for changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception & Performance, 1991, 17: 1057~1074 [38] Kutas M, Hillyard, S A. Reading senseless sentences Brain potentials reflect semantic incongruity. Science, 1980, 207: 203~205 [39] VanRullen R, Thorpe S J. The time course of visual processing: from early perception to decision-making. Journal of Cognitive Neuroscience. 2001, 13(4): 454~461 [40] Schendan H E, Ganis G, Kutas M. Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology, 1998, 35(3): 240~251 [41] Mouchetant-Rostaing Y, Giard M H, Delpuech C, et al. Early signs of visual categorization for biological and non-biological stimuli in humans. Neuroreport, 2000, 11(11): 2521~2525 |