Awh, E., Anllo-Vento, L., & Hillyard, S. A. (2000). The role of spatial selective attention in working memory for locations: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 12(5), 840-847, doi: 10.1162/089892900562444. Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559, doi: 10.1126/science.1736359. Baddeley, A. (2003a). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189-208, doi: 10.1016/S0021-9924(03)00019-4. Baddeley, A. (2003b). Working memory: Looking back and looking forward. Nature Review Neuroscience, 4(10), 829-839, doi: 10.1038/nrn1201. Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553-573, doi: 10.1037/0033-2909.130.4.553. Beste, C., Heil, M., & Konrad, C. (2010). Individual differences in ERPs during mental rotation of characters: Lateralization, and performance level. Brain & Cognition, 72(2), 238-243, doi: 10.1016/j.bandc.2009.09.005. Bosch, V., Mecklinger, A., & Friederici, A. D. (2001). Slow cortical potentials during retention of object, spatial, and verbal information. Cognitive Brain Research, 10(3), 219-237, doi: 10.1016/S0926-6410(00)00040-9. Boucher, O., Bastien, C. H., Muckle, G., Saint-Amour, D., Jacobson, S. W., & Jacobson, J. L. (2010). Behavioural correlates of the P3b event-related potential in school-age children. International Journal of Psychophysiology, 76(3), 148-157, doi: 10.1016/j.ijpsycho.2010.03.005. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608, doi: 10.1038/386604a0. Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General, 123(4), 354-373, doi: 10.1037/0096-3445.123.4.354. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547-552, doi: 10.1016/j.tics.2003.10.005. Corballis, P. M. (2003). Visuospatial processing and the right-hemisphere interpreter. Brain and Cognition, 53(2), 171-176, doi: 10.1016/S0278-2626(03)00103-9. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21, doi: 10.1016/j.jneumeth.2003.10.009. D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279-281, doi: 10.1038/378279a0. D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 41(1), 66-86, doi: 10.1006/brcg.1999.1096. Emrich, S. M, Lockhart H. A., & Al-Aidroos, N. (2017). Attention mediates the flexible allocation of visual working memory resources. Journal of Experimental Psychology: Human Perception & Performance, 43(7), 1454-1465, doi: 10.1037/xhp0000398. Engle, R. W. (2010). Role of working-memory capacity in cognitive control. Current Anthropology, 51(S1), S17-S26, doi: 10.1086/650572. Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13(2), 190-193, doi: 10.1177/1745691617720478. Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298-1300, doi: 10.1038/nn1543. Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S.,.. Cannon, T. D. (2002). Maintenance and manipulation in spatial working memory: Dissociations in the prefrontal cortex. NeuroImage, 17(1), 201-213, doi: 10.1006/nimg.2002.1161. Heil, M. (2002). The functional significance of ERP effects during mental rotation. Psychophysiology, 39(5), 535-545, doi: 10.1111/1469-8986.3950535. Heil, M., & Rolke, B. (2002). Toward a chronopsychophysiology of mental rotation. Psychophysiology, 39(4), 414-422, doi: 10.1111/1469-8986.3940414. Hsieh, L. T., Ekstrom, A. D., & Ranganath, C. (2011). Neural oscillations associated with item and temporal order maintenance in working memory. Journal of Neuroscience, 31(30), 10803-10810, doi: 10.1523/JNEUROSCI.0828-11.2011. Hyun, J. S., & Luck, S. J. (2007). Visual working memory as the substrate for mental rotation. Psychonomic Bulletin & Review, 14(1), 154-158. Jha, A. P. (2002). Tracking the time-course of attentional involvement in spatial working memory: An event-related potential investigation. Cognitive Brain Research, 15(1), 61-69, doi: 10.1016/S0926-6410(02)00216-1. Jolles, D. D., Kleibeuker, S. W., Rombouts, S. A. R. B., & Crone, E. A. (2011). Developmental differences in prefrontal activation during working memory maintenance and manipulation for different memory loads. Developmental Science, 14(4), 713-724, doi: 10.1111/j.1467-7687.2010.01016.x. Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A.,.. Willis, C. R. (1998). The role of parietal cortex in verbal working memory. Journal of Neuroscience, 18(13), 5026-5034, doi: 10.1523/JNEUROSCI.18-13-05026.1998. Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5), 1147-1154, doi: 10.1093/cercor/bhq185. Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169-183, doi: 10.1037/0096-3445.130.2.169. Kane, M. J., & Engle, R. W. (2000). Working-memory capacity, proactive interference, and divided attention: Limits on long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(2), 336-358, doi: 10.1037/0278-7393.26.2.336. Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47-70, doi: 10.1037/0096-3445.132.1.47. Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577, doi: 10.1017/S0048577201990559. Liu, D., Guo, C. Y., & Luo, J. (2010). An electrophysiological analysis of maintenance and manipulation in working memory. Neuroscience Letters, 482(2), 123-127, doi: 10.1016/j.neulet.2010.07.015. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103-107, doi: 10.1038/nn2024. Mecklinger, A., & Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Research, 4(3), 211-224, doi: 10.1016/S0926-6410(96)00034-1. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100, doi: 10.1006/cogp.1999.0734. Morgan, H. M., Jackson, M. C., Klein, C., Mohr, H., Shapiro, K. L., & Linden, D. E. J. (2010). Neural signatures of stimulus features in visual working memory—a spatiotemporal approach. Cerebral Cortex, 20(1), 187-197, doi: 10.1093/cercor/bhp094. Morgan, H. M., Klein, C., Boehm, S. G., Shapiro, K. L., & Linden, D. E. J. (2008). Working memory load for faces modulates P300, N170, and N250r. Journal of Cognitive Neuroscience, 20(6), 989-1002, doi: 10.1162/jocn.2008.20072. Osaka, M., Osaka, N., Kondo, H., Morishita, M., Fukuyama, H., Aso, T., & Shibasaki, H. (2003). The neural basis of individual differences in working memory capacity: An fMRI study. NeuroImage, 18(3), 789-797, doi: 10.1016/S1053-8119(02)00032-0. Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., & Shibasaki, H. (2004). The neural basis of executive function in working memory: An fMRI study based on individual differences. NeuroImage, 21(2), 623-631, doi: 10.1016/j.neuroimage.2003.09.069. Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P. M. J., Carpenter, T. A.,.. Pickard, J. D. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. European Journal of Neuroscience, 11(2), 567-574, doi: 10.1046/j.1460-9568.1999.00449.x. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148, doi: 10.1016/j.clinph.2007.04.019. Prime, D. J., & Jolicoeur, P. (2010). Mental rotation requires visual short-term memory: Evidence from human electric cortical activity. Journal of Cognitive Neuroscience, 22(11), 2437-2446, doi: 10.1162/jocn.2009.21337. Rama, P., Sala, J. B., Gillen, J. S., Pekar, J. J., & Courtney, S. M. (2001). Dissociation of the neural systems for working memory maintenance of verbal and nonspatial visual information. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 161-171, doi: 10.3758/CABN.1.2.161. Redick, T. R., & Engle, R. W. (2006). Working memory capacity and attention network test performance. Applied Cognitive Psychology, 20(5), 713-721, doi: 10.1002/acp.1224. Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. Journal of Experimental Psychology: General, 126(3), 211-227, doi: 10.1037/0096-3445.126.3.211. Rösler, F., Heil, M., & Röder, B. (1997). Slow negative brain potentials as reflections of specific modular resources of cognition. Biological Psychology, 45(1-3), 109-141, doi: 10.1016/S0301-0511(96)05225-8. Serino, A., Ciaramelli, E., Di Santantonio, A., Malagù, S., Servadei, F., & Làdavas, E. (2006). Central executive system impairment in traumatic brain injury. Brain Injury, 20(1), 23-32, doi: 10.1080/02699050500309627. Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5-42, doi: 10.1006/cogp.1997.0658. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11-20, doi: 10.1093/cercor/6.1.11. Tang, D. D., Hu, L., Lei, Y., Li, H., & Chen, A. T. (2015). Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict. Frontiers in Human Neuroscience, 9, 433, doi: 10.3389/fnhum.2015.00433. Thakkar, K. N., & Park, S. (2012). Impaired passive maintenance and spared manipulation of internal representations in patients with schizophrenia. Schizophrenia Bulletin, 38(4), 787-795, doi: 10.1093/schbul/sbq159. Tseng, P., Iu, K. C., & Juan, C. H. (2018). The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Scientific Reports, 8, 349, doi: 10.1038/s41598-017-18449-w. Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104-132, doi: 10.1037/0033-295X.114.1.104. Unsworth, N., Schrock, J. C., & Engle, R. W. (2004). Working memory capacity and the antisaccade task: Individual differences in voluntary saccade control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(6), 1302-1321, doi: 10.1037/0278-7393.30.6.1302. Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Attention control, secondary memory, or both? A direct test of the dual-component model. Journal of Memory and Language, 62(4), 392-406, doi: 10.1016/j.jml.2010.02.001. Vallar, G., Di Betta, A. M., & Silveri, M. C. (1997). The phonological short-term store-rehearsal system: Patterns of impairment and neural correlates. Neuropsychologia, 35(6), 795-812, doi: 10.1016/S0028-3932(96)00127-3. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751, doi: 10.1038/nature02447. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503, doi: 10.1038/nature04171. Wijers, A. A., Otten, L. J., Feenstra, S., Mulder, G., & Mulder, L. J. M. (1989). Brain potentials during selective attention, memory search, and mental rotation. Psychophysiology, 26(4), 452-467, doi: 10.1111/j.1469-8986.1989.tb01951.x. Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. Journal of Neuroscience, 29(10), 3059-3066, doi: 10.1523/JNEUROSCI.4621-08.2009. |