刘炜, 王苗, 张智君, 赵亚军. (2016). 数量认知和密度认知的关系. 心理科学进展, 24(6), 885–891 孙霁, 孙沛. (2019). 发展性计算障碍成年人数量加工机制的实验研究. 中国特殊教育, (6), 56–62 张真, 苏彦捷. (2007). 人类数能力的演化基础——数能力比较研究的启示. 心理科学进展, 15(1), 57–63 Anobile, G., Castaldi, E., Turi, M., Tinelli, F., & Burr, D. C. (2016). Numerosity but not texture-density discrimination correlates with math ability in children. Developmental Psychology, 52(8), 1206–1216, doi: 10.1037/dev0000155. Anobile, G., Cicchini, G. M., & Burr, D. C. (2014). Separate mechanisms for perception of numerosity and density. Psychological Science, 25(1), 265–270, doi: 10.1177/0956797613501520. Anobile, G., Tomaiuolo, F., Campana, S., & Cicchini, G. M. (2020). Three-systems for visual numerosity: A single case study. Neuropsychologia, 136, 107259, doi: 10.1016/j.neuropsychologia.2019.107259. Anobile, G., Turi, M., Cicchini, G. M., & Burr, D. C. (2015). Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects. Journal of Vision, 15(5), 4, doi: 10.1167/15.5.4. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291, doi: 10.1038/nrn2334. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436, doi: 10.1163/156856897X00357. Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1), 32–44, doi: 10.1016/j.cognition.2010.09.005. Butterworth, B., Gallistel, C. R., & Vallortigara, G. (2018). Introduction: The origins of numerical abilities. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1740), 20160507, doi: 10.1098/rstb.2016.0507. Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience, 8(1), 47–68, doi: 10.1162/jocn.1996.8.1.47. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314, doi: 10.1016/j.tics.2004.05.002. Fornaciai, M., & Park, J. (2017). Distinct neural signatures for very small and very large numerosities. Frontiers in Human Neuroscience, 11, 21, doi: 10.3389/fncom.2017.00021. Gebuis, T., Kadosh, R. C., & Gevers, W. (2016). Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review. Acta Psychologica, 171, 17–35, doi: 10.1016/j.actpsy.2016.09.003. Guillaume, M., Gevers, W., & Content, A. (2016). Assessing the approximate number system: no relation between numerical comparison and estimation tasks. Psychological Research, 80(2), 248–258, doi: 10.1007/s00426-015-0657-x. Haist, F., Wazny, J. H., Toomarian, E., & Adamo, M. (2015). Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement. Human Brain Mapping, 36(2), 804–826, doi: 10.1002/hbm.22666. Harvey, B. M., & Dumoulin, S. O. (2017). Can responses to basic non-numerical visual features explain neural numerosity responses? NeuroImage, 149, 200–209, doi: 10.1016/j.neuroimage.2017.02.012. Hesse, P. N., Schmitt, C., Klingenhoefer, S., & Bremmer, F. (2017). Preattentive processing of numerical visual information. Frontiers in Human Neuroscience, 11, 70, doi: 10.3389/fncom.2017.00070. Hyde, D. C., & Spelke, E. S. (2009). All numbers are not equal: An electrophysiological investigation of small and large number representations. Journal of Cognitive Neuroscience, 21(6), 1039–1053, doi: 10.1162/jocn.2009.21090. Hyde, D. C., & Spelke, E. S. (2012). Spatiotemporal dynamics of processing nonsymbolic number: An event-related potential source localization study. Human Brain Mapping, 33(9), 2189–2203, doi: 10.1002/hbm.21352. Jevons, W. S. (1871). The power of numerical discrimination. Nature, 3(67), 281–282, doi: 10.1038/003281a0. Kadosh, R. C., Kadosh, K. C., Linden, D. E. J., & Gevers, W. (2007). The brain locus of interaction between number and size: A combined functional magnetic resonance Imaging and event-related potential study. Journal of Cognitive Neuroscience, 19(6), 957–970, doi: 10.1162/jocn.2007.19.6.957. Katzin, N., Katzin, D., Rosén, A., Henik, A., & Salti, M. (2020). Putting the world in mind: The case of mental representation of quantity. Cognition, 195, 104088, doi: 10.1016/j.cognition.2019.104088. Odic, D., & Halberda, J. (2015). Eye movements reveal distinct encoding patterns for number and cumulative surface area in random dot arrays. Journal of Vision, 15(15), 5, doi: 10.1167/15.15.5. Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2016). Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex, 26(2), 748–763. Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551, doi: 10.1016/j.tics.2010.09.008. Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993, doi: 10.1016/S0896-6273(04)00107-2. Pomè, A., Anobile, G., Cicchini, G. M., & Burr, D. C. (2019). Different reaction-times for subitizing, estimation, and texture. Journal of Vision, 19(6), 14, doi: 10.1167/19.6.14. Pomè, A., Anobile, G., Cicchini, G. M., Scabia, A., & Burr, D. C. (2019). Higher attentional costs for numerosity estimation at high densities. Attention, Perception, & Psychophysics, 81(8), 2604–2611, doi: 10.3758/s13414-019-01831-3. Rubinsten, O., Dana, S., Lavro, D., & Berger, A. (2013). Processing ordinality and quantity: ERP evidence of separate mechanisms. Brain and Cognition, 82(2), 201–212, doi: 10.1016/j.bandc.2013.04.008. Smets, K., Gebuis, T., & Reynvoet, B. (2013). Comparing the neural distance effect derived from the non-symbolic comparison and the same-different task. Frontiers in Human Neuroscience, 7, 28. Soltész, F., & Szűcs, D. (2014). Neural adaptation to non-symbolic number and visual shape: An electrophysiological study. Biological Psychology, 103, 203–211, doi: 10.1016/j.biopsycho.2014.09.006. Soltész, F., Szűcs, D., Dékány, J., Márkus, A., & Csépe, V. (2007). A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neuroscience Letters, 417(2), 181–186, doi: 10.1016/j.neulet.2007.02.067. Zimmermann, E. (2018). Small numbers are sensed directly, high numbers constructed from size and density. Cognition, 173, 1–7, doi: 10.1016/j.cognition.2017.12.003.
|