|
马奕帆. (2021). 基于三种结构学习算法的属性层级结构估计研究与应用(硕士学位论文). 江西师范大学, 南昌.
|
|
肖遇春. (2021). 基于贝叶斯网模型的多级计分诊断测验分类研究(硕士学位论文). 江西师范大学, 南昌.
|
|
喻晓锋, 丁树良, 秦春影, 陆云娜 贝叶斯网在认知诊断属性层级结构确定中的应用. 心理学报, 2011, 43 (3): 338- 346.
|
|
喻晓锋, 罗照盛, 高椿雷, 秦春影 Q矩阵包含错误的诊断测验分类准确性比较. 心理科学, 2014, 37 (6): 1478- 1484.
DOI
|
|
Almond, R. G., DiBello, L. V., Moulder, B., & Zapata-Rivera, J. Modeling diagnostic assessments with Bayesian networks. Journal of Educational Measurement, 2007, 44 (4): 341- 359.
DOI
|
|
Béland, A., & Mislevy, R. J. Probability-based inference in a domain of proportional reasoning tasks. Journal of Educational Measurement, 1996, 33 (1): 3- 27.
DOI
|
|
Chen, P., Xin, T., Wang, C., & Chang, H. H. Online calibration methods for the DINA model with independent attributes in CD-CAT. Psychometrika, 2012, 77 (2): 201- 222.
DOI
|
|
de la Torre, J. The generalized DINA model framework. Psychometrika, 2011, 76 (2): 179- 199.
DOI
|
|
Friedman, N., Geiger, D., & Goldszmidt, M. Bayesian network classifiers. Machine Learning, 1997, 29 (2): 131- 163.
|
|
Gitomer, D. H., Steinberg, L. S., & Mislevy, R. J. (1995). Diagnostic assessment of troubleshooting skill in an intelligent tutoring system. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 73–101). Hillsdale, NJ: Erlbaum.
|
|
Lee, J. (2003). Diagnosis of bugs in multi-column subtraction using Bayesian networks (Unpublished doctorial dissertation). Columbia University, New York.
|
|
Lee, J. Y., & Corter, J. E. Diagnosis of subtraction bugs using Bayesian networks. Applied Psychological Measurement, 2011, 35 (1): 27- 47.
DOI
|
|
Lee, Y. S., Park, Y. S., & Taylan, D. A cognitive diagnostic modeling of attribute mastery in Massachusetts, Minnesota, and the U.S. national sample using the TIMSS 2007. International Journal of Testing, 2011, 11 (2): 144- 177.
DOI
|
|
Leighton, J. P., & Gierl, M. J. (2007). Cognitive diagnostic assessment for education. New York: Cambridge University Press.
|
|
Ma, W. C., & de la Torre, J. A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 2016, 69 (3): 253- 275.
DOI
|
|
Ma, W. C., & de la Torre, J. GDINA: An R package for cognitive diagnosis modeling. Journal of Statistical Software, 2020, 93 (14): 1- 26.
|
|
Mihaljević, B., Bielza, C., Larrañaga, P. bnclassify: Learning Bayesian network classifiers. The R Journal, 2018, 10 (2): 455- 468.
|
|
Mislevy, R. J. (1995). Probability-based inference in cognitive diagnosis. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds), Cognitively diagnostic assessment (pp. 43–71). Hillsdale, NJ: Erlbaum.
|
|
Mislevy, R. J., Steinberg, L. S., Breyer, F. J., Almond, R. G., & Johnson, L. Making sense of data from complex assessments. Applied Measurement in Education, 2002, 15 (4): 363- 389.
DOI
|
|
Neapolitan, R. E. (2003). Learning Bayesian networks. Harlow, United Kingdom: Prentice Hall.
|
|
Nichols, P. D. A framework for developing cognitively diagnostic assessments. Review of Educational Research, 1994, 64 (4): 575- 603.
DOI
|
|
Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society (pp. 329–334). Irvine, CA.
|
|
Rupp, A. A., & Templin, J. L. Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement: Interdisciplinary Research and Perspective, 2008, 6 (4): 219- 262.
DOI
|
|
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores Psychometrika, 34 (1), 1–97.
|
|
Vomlel, J. (2004). Bayesian networks in educational testing. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(S1), 83–100.
|
|
von Davier, M., & Lee, Y. S. (2019). Handbook of diagnostic classification models. New York: Springer.
|
|
Wang, L. L., Xin, T., & Liu, Y. L. An improved parameter-estimating method in Bayesian networks applied for cognitive diagnosis assessment. Frontiers in Psychology, 2021, 12, 665441.
DOI
|
|
Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In 2016 IEEE 6th International Conference on Advanced Computing (pp. 78–83). Bhimavaram, India.
|
|
Yu, X. F., & Cheng, Y. Data-driven Q-matrix validation using a residual-based statistic in cognitive diagnostic assessment. British Journal of Mathematical and Statistical Psychology, 2020, 73 (S1): 145- 179.
DOI
|