Studies of Psychology and Behavior ›› 2014, Vol. 12 ›› Issue (4): 476-483.

• Orignal Article • Previous Articles     Next Articles

A Cognitive Component Analysis of Insight in Two-Move Matchstick Arithmetic Problems

Guo Liting, Sun Hanyin   

  1. School of Psychology, Beijing Normal University, Beijing 100875
  • Received:2014-02-02 Online:2014-12-22 Published:2014-07-20

两步火柴棍算术问题解决中的顿悟认知成分分析*

郭丽婷,孙汉银   

  1. 北京师范大学心理学院,北京 100875
  • 通讯作者: 孙汉银,男,北京师范大学心理学院副教授,博士。E-mail:sunhanyin@bnu.edu.cn。
  • 作者简介:郭丽婷,女,北京师范大学心理学院研究生。
  • 基金资助:
    科技部2013年科技基础性工作专项项目“少年儿童创新素质培养、评价与示范”(项目编号:2013IM030200)。

Abstract: As a new insight problem, matchstick arithmetic problems have been used to investigate insight problem solving. However, it is unclear how difficult the different types of matchstick arithmetic problems are and to what extent they exhibit characteristics of insight. In the present study, 68 undergraduates attempted to solve 8 two-move matchstick arithmetic problems either silently or while providing concurrent verbal protocols. The results showed that: 1)Verbal protocols could be used to examine the cognitive processes during the two-move matchstick arithmetic problems solving;2) the difficulty did not depend entirely on the levels of constraint relaxation and chunk decomposition;3) there were three types of cognitive components in the 5 types of problems, such as failure, impasse and restructuring, and the restructuring also included the top-down and bottom-up restructuring. Overall, the cognitive process of problem solving may be viewed as a continuum between the insight and analysis, and the greater difficult tautology and operator types belonged more to the end of insight, the CD type tended to be in the middle, while the lower difficult hybrid and value types belonged to the end of analysis. Additionally, the closer to the end of insight the problem was, the more bottom-up restructuring it had.

摘要: 选取68名大学生,随机分为口语报告组和非口语报告组,解决数值型、混合型、分解型、符号型和连等型等五种类型在内的8个两步火柴棍算术问题,以探讨不同难度的两步火柴棍算术问题解决过程中的顿悟认知成分。研究结果:(1)在两步火柴棍算术问题解决过程中,口语报告不存在口语遮蔽效应;(2)两步火柴棍算术问题的难度水平不完全取决于不正确表征;(3)五种题型中都存在失败、僵局和重构三种顿悟认知成分,且都存在自下而上和自上而下两种重构类型。本研究验证了难度水平不同的两步火柴棍算术问题解决过程是一个从分析到顿悟的连续体,即难度较大的连等型和符号型包含的顿悟认知成分较多,更接近顿悟性问题一端,分解型居中,难度较小的混合型、数值型包含的顿悟认知成分较少,更接近分析性问题一端;且自下而上的重构更多存在于顿悟性问题一端。

CLC Number: