曹贤才, 时冉冉, 牛玉柏. (2016). 近似数量系统敏锐度与数学能力的关系. 心理科学, 39(3), 580-586.
匡华. (2008). 工作记忆与儿童加减法心算(硕士学位论文). 华中师范大学, 武汉.
李红霞. (2016). 工作记忆成分、近似数量系统精确性对个体算术策略运用的影响:来自行为与ERP的证据(硕士学位论文). 山东师范大学.
李红霞, 司继伟, 陈泽建, 张堂正. (2015). 人类的近似数量系统. 心理科学进展, 23(4), 562-570.
刘昌, 王翠艳. (2008). 心算的加工机制:来自认知神经科学的研究. 心理科学进展, 16(3), 446-452.
吕娜. (2015). 工作记忆中央执行在算术估计策略运用中的作用:行为与ERP证据(硕士学位论文). 山东师范大学.
牛玉柏, 时冉冉, 曹贤才. (2016). 学前儿童近似数量系统敏锐度与符号数学能力的关系. 心理发展与教育, 32(2), 129-138.
文玲玲, 陈建华. (2013). 关于小学低年级有效开展听算训练的若干思考. 现代基础教育研究, 10(2), 127-130.
章雷刚. (2007). 大, 小数量表征的心理机制(硕士学位论文). 浙江大学.
张奇, 林崇德, 赵冬梅, 王秀丽. (2002). 小学生加法口算速度和广度的发展研究. 心理发展与教育, 18(1), 16-21.
Alloway, T. P. (2007). Automated working memory assessment. London:Pearson Assessment.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53(1), 1-44.
Campbell, J. I. D. (2004). Handbook of mathematical cognition. New York:Psychology Press.
Chesney, D., Bjalkebring, P., & Peters, E. (2015). How to estimate how well people estimate:Evaluating measures of individual differences in the approximate number system. Attention, Perception, & Psychophysics, 77(8), 2781-2802.
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83-120.
Feigenson, L. (2011). Predicting sights from sounds:6-month old infants' intermodal numerical abilities. Journal of Experimental Child Psychology, 110(3), 347-361.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23-27.
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406.
Hitch, G. J. (1978). The role of short-term working memory in mental arithmetic. Cognitive Psychology, 10(3), 302-323.
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116-11120.
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.
Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement:But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229.
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382-10385.
Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133.
Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving. Memory & Cognition, 22(4), 395-410.
Pinheiro-Chagas, P., Wood, G., Knops, A., Krinzinger, H., Lonnemann, J., Starling-Aalves, I., … Haase, V. G. (2014). In how many ways is the approximate number system associated with exact calculation? PLoS One, 9(11), e111155. doi:10.1371/journal.pone.0111155.
Rubenstein, R. N. (1985). Computational estimation and related mathematical skills. Journal for Research in Mathematics Education, 16(2), 106-119.
Reys, R. E., Bestgen, B. J., Trafton, P. R., & Zawojewski, J. S. (1984). Computational estimation instructional materials for the middle grades. Final report. Washington, DC:National Science Foundation.
van Marle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505.
van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect:The same-different task. Journal of Cognitive Psychology, 23(1), 112-120.
|