Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629, doi: 10.1038/nrn1476. Brady, T. F., & Tenenbaum, J. B. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120(1), 85–109, doi: 10.1037/a0030779. Green, C., & Hummel, J. E. (2006). Familiar interacting object pairs are perceptually grouped. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1107–1119, doi: 10.1037/0096-1523.32.5.1107. Groen, I. I. A., Dekker, T. M., Knapen, T., & Silson, E. H. (2022). Visuospatial coding as ubiquitous scaffolding for human cognition. Trends in Cognitive Sciences, 26(1), 81–96, doi: 10.1016/j.tics.2021.10.011. Gronau, N., & Shachar, M. (2014). Contextual integration of visual objects necessitates attention. Attention, Perception, & Psychophysics, 76(3), 695–714. Huang, L. Q., & Awh, E. (2018). Chunking in working memory via content-free labels. Scientific Reports, 8(1), 23, doi: 10.1038/s41598-017-18157-5. Kaiser, D., Stein, T., & Peelen, M. V. (2014). Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11217–11222, doi: 10.1073/pnas.1400559111. Kaiser, D., Stein, T., & Peelen, M. V. (2015). Real-world spatial regularities affect visual working memory for objects. Psychonomic Bulletin & Review, 22(6), 1784–1790. Li, J. F., Qian, J. H., & Liang, F. (2018). Evidence for the beneficial effect of perceptual grouping on visual working memory: An empirical study on illusory contour and a meta-analytic study. Scientific Reports, 8(1), 13864, doi: 10.1038/s41598-018-32039-4. O’Donnell, R. E., Clement, A., & Brockmole, J. R. (2018). Semantic and functional relationships among objects increase the capacity of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1151–1158. Olivers, C. N. L., & Roelfsema, P. R. (2020). Attention for action in visual working memory. Cortex, 131, 179–194, doi: 10.1016/j.cortex.2020.07.011. Riddoch, M. J., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsychological evidence for action-based effects on object selection. Nature Neuroscience, 6(1), 82–89, doi: 10.1038/nn984. Roberts, K. L., & Humphreys, G. W. (2010). Action relationships concatenate representations of separate objects in the ventral visual system. NeuroImage, 52(4), 1541–1548, doi: 10.1016/j.neuroimage.2010.05.044. Schurgin, M. W., & Flombaum, J. I. (2018). Visual working memory is more tolerant than visual long-term memory. Journal of Experimental Psychology: Human Perception and Performance, 44(8), 1216–1227, doi: 10.1037/xhp0000528. Silson, E. H., Zeidman, P., Knapen, T., & Baker, C. I. (2021). Representation of contralateral visual space in the human hippocampus. Journal of Neuroscience, 41(11), 2382–2392, doi: 10.1523/JNEUROSCI.1990-20.2020. van Ede, F., Chekroud, S. R., & Nobre, A. C. (2019). Human gaze tracks attentional focusing in memorized visual space. Nature Human Behaviour, 3(5), 462–470, doi: 10.1038/s41562-019-0549-y. Vestner, T., Tipper, S. P., Hartley, T., Over, H., & Rueschemeyer, S. A. (2019). Bound together: Social binding leads to faster processing, spatial distortion, and enhanced memory of interacting partners. Journal of Experimental Psychology: General, 148(7), 1251–1268, doi: 10.1037/xge0000545.
|