心理与行为研究 ›› 2023, Vol. 21 ›› Issue (6): 784-791.DOI: 10.12139/j.1672-0628.2023.06.009
收稿日期:
2023-01-07
出版日期:
2023-11-20
发布日期:
2023-11-20
通讯作者:
赵永萍
基金资助:
Renjie LIU, Lingxiang XIA, Yongping ZHAO()
Received:
2023-01-07
Online:
2023-11-20
Published:
2023-11-20
Contact:
Yongping ZHAO
摘要: 通过对1148名大学生进行历时3年6次的追踪研究,使用潜类别增长模型考察了网络欺凌受害的独立发展轨迹和网络欺凌受害与网络欺凌的联合发展轨迹的特点及其性别差异。结果发现:(1)大学生网络欺凌受害的独立发展轨迹为3条(高受害−下降组、中受害−上升组和低受害−稳定组);(2)网络欺凌受害与网络欺凌的联合发展轨迹为2条(中受害−低欺凌−上升组、低受害−低欺凌−稳定组);(3)网络欺凌受害的独立发展轨迹和网络欺凌受害与网络欺凌的联合发展轨迹均存在显著的性别差异,男生更多卷入网络欺凌及受害。研究结果为大学生网络欺凌受害的预防和干预提供支持和依据。
中图分类号:
刘仁洁, 夏凌翔, 赵永萍. 大学生网络欺凌受害潜在类别的发展特点及性别因素的作用[J]. 心理与行为研究, 2023, 21(6): 784-791.
Renjie LIU, Lingxiang XIA, Yongping ZHAO. Developmental Characteristics of Latent Class of Cybervictimization Among College Students and the Role of Gender[J]. Studies of Psychology and Behavior, 2023, 21(6): 784-791.
M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
1.网络欺凌受害(T1) | 1.23 | 0.36 | |||||||||||
2.网络欺凌受害(T2) | 1.21 | 0.42 | 0.44*** | ||||||||||
3.网络欺凌受害(T3) | 1.20 | 0.40 | 0.38*** | 0.33*** | |||||||||
4.网络欺凌受害(T4) | 1.16 | 0.43 | 0.22*** | 0.27*** | 0.27*** | ||||||||
5.网络欺凌受害(T5) | 1.19 | 0.46 | 0.33*** | 0.26*** | 0.39*** | 0.33*** | |||||||
6.网络欺凌受害(T6) | 1.23 | 0.56 | 0.27*** | 0.22*** | 0.31*** | 0.22*** | 0.47*** | ||||||
7.网络欺凌(T1) | 1.14 | 0.24 | 0.63*** | 0.36*** | 0.31*** | 0.20*** | 0.22*** | 0.17*** | |||||
8.网络欺凌(T2) | 1.15 | 0.34 | 0.31*** | 0.79*** | 0.23*** | 0.19*** | 0.19*** | 0.15*** | 0.37*** | ||||
9.网络欺凌(T3) | 1.16 | 0.36 | 0.29*** | 0.27*** | 0.77*** | 0.26*** | 0.36*** | 0.28*** | 0.36*** | 0.27*** | |||
10.网络欺凌(T4) | 1.15 | 0.42 | 0.17*** | 0.25*** | 0.19*** | 0.84*** | 0.27*** | 0.21*** | 0.19*** | 0.24*** | 0.22*** | ||
11.网络欺凌(T5) | 1.17 | 0.44 | 0.22*** | 0.20*** | 0.31*** | 0.31*** | 0.84*** | 0.47*** | 0.17*** | 0.18*** | 0.31*** | 0.29*** | |
12.网络欺凌(T6) | 1.21 | 0.54 | 0.21*** | 0.18*** | 0.27*** | 0.20*** | 0.42*** | 0.91*** | 0.15*** | 0.16*** | 0.28*** | 0.22*** | 0.49*** |
表1 各变量的均值、标准差及相关矩阵
M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
1.网络欺凌受害(T1) | 1.23 | 0.36 | |||||||||||
2.网络欺凌受害(T2) | 1.21 | 0.42 | 0.44*** | ||||||||||
3.网络欺凌受害(T3) | 1.20 | 0.40 | 0.38*** | 0.33*** | |||||||||
4.网络欺凌受害(T4) | 1.16 | 0.43 | 0.22*** | 0.27*** | 0.27*** | ||||||||
5.网络欺凌受害(T5) | 1.19 | 0.46 | 0.33*** | 0.26*** | 0.39*** | 0.33*** | |||||||
6.网络欺凌受害(T6) | 1.23 | 0.56 | 0.27*** | 0.22*** | 0.31*** | 0.22*** | 0.47*** | ||||||
7.网络欺凌(T1) | 1.14 | 0.24 | 0.63*** | 0.36*** | 0.31*** | 0.20*** | 0.22*** | 0.17*** | |||||
8.网络欺凌(T2) | 1.15 | 0.34 | 0.31*** | 0.79*** | 0.23*** | 0.19*** | 0.19*** | 0.15*** | 0.37*** | ||||
9.网络欺凌(T3) | 1.16 | 0.36 | 0.29*** | 0.27*** | 0.77*** | 0.26*** | 0.36*** | 0.28*** | 0.36*** | 0.27*** | |||
10.网络欺凌(T4) | 1.15 | 0.42 | 0.17*** | 0.25*** | 0.19*** | 0.84*** | 0.27*** | 0.21*** | 0.19*** | 0.24*** | 0.22*** | ||
11.网络欺凌(T5) | 1.17 | 0.44 | 0.22*** | 0.20*** | 0.31*** | 0.31*** | 0.84*** | 0.47*** | 0.17*** | 0.18*** | 0.31*** | 0.29*** | |
12.网络欺凌(T6) | 1.21 | 0.54 | 0.21*** | 0.18*** | 0.27*** | 0.20*** | 0.42*** | 0.91*** | 0.15*** | 0.16*** | 0.28*** | 0.22*** | 0.49*** |
模型 | k | AIC | BIC | aBIC | Entropy | LMR-LRT(p) | BLRT(p) | 类别概率 |
Class-1 | 9 | 8046.71 | 8092.12 | 8063.53 | 1 | |||
Class-2 | 13 | 6494.41 | 6560.00 | 6518.71 | 0.97 | 0.007 | <0.001 | 0.09/0.91 |
Class-3 | 17 | 5664.32 | 5750.09 | 5696.10 | 0.97 | 0.027 | <0.001 | 0.08/0.07/0.85 |
Class-4 | 21 | 5232.03 | 5338.00 | 5271.29 | 0.98 | 0.265 | <0.001 | 0.05/0.85/0.02/0.08 |
表2 网络欺凌受害的潜类别增长模型拟合指数
模型 | k | AIC | BIC | aBIC | Entropy | LMR-LRT(p) | BLRT(p) | 类别概率 |
Class-1 | 9 | 8046.71 | 8092.12 | 8063.53 | 1 | |||
Class-2 | 13 | 6494.41 | 6560.00 | 6518.71 | 0.97 | 0.007 | <0.001 | 0.09/0.91 |
Class-3 | 17 | 5664.32 | 5750.09 | 5696.10 | 0.97 | 0.027 | <0.001 | 0.08/0.07/0.85 |
Class-4 | 21 | 5232.03 | 5338.00 | 5271.29 | 0.98 | 0.265 | <0.001 | 0.05/0.85/0.02/0.08 |
发展轨迹类别 | 截距 | 斜率 | 曲线斜率 |
高受害−下降组 | 1.78*** | 0.11 | −0.04*** |
中受害−上升组 | 1.61*** | −0.39*** | 0.14*** |
低受害−稳定组 | 1.15*** | −0.03*** | 0.003* |
表3 网络欺凌受害的发展轨迹各类别截距与斜率的参数值
发展轨迹类别 | 截距 | 斜率 | 曲线斜率 |
高受害−下降组 | 1.78*** | 0.11 | −0.04*** |
中受害−上升组 | 1.61*** | −0.39*** | 0.14*** |
低受害−稳定组 | 1.15*** | −0.03*** | 0.003* |
模型 | k | AIC | BIC | aBIC | Entropy | LMR-LRT(p) | BLRT(p) | 类别概率 |
Class-1 | 18 | 14284.40 | 14375.22 | 14318.05 | 1 | |||
Class-2 | 25 | 10666.91 | 10793.06 | 10713.65 | 0.99 | 0.005 | <0.001 | 0.07/0.93 |
Class-3 | 32 | 8991.35 | 9152.82 | 9051.17 | 0.98 | 0.061 | <0.001 | 0.06/0.08/0.86 |
Class-4 | 39 | 8295.92 | 8492.71 | 8368.83 | 0.98 | 0.422 | <0.001 | 0.02/0.08/0.05/0.85 |
表4 网络欺凌受害−网络欺凌的联合发展轨迹拟合指数
模型 | k | AIC | BIC | aBIC | Entropy | LMR-LRT(p) | BLRT(p) | 类别概率 |
Class-1 | 18 | 14284.40 | 14375.22 | 14318.05 | 1 | |||
Class-2 | 25 | 10666.91 | 10793.06 | 10713.65 | 0.99 | 0.005 | <0.001 | 0.07/0.93 |
Class-3 | 32 | 8991.35 | 9152.82 | 9051.17 | 0.98 | 0.061 | <0.001 | 0.06/0.08/0.86 |
Class-4 | 39 | 8295.92 | 8492.71 | 8368.83 | 0.98 | 0.422 | <0.001 | 0.02/0.08/0.05/0.85 |
发展轨迹类别 | 网络欺凌受害 | 网络欺凌 | |||||
截距 | 斜率 | 曲线斜率 | 截距 | 斜率 | 曲线斜率 | ||
中受害−低欺凌−上升组 | 1.63*** | −0.41*** | 0.14*** | 1.34*** | −0.22*** | 0.11*** | |
低受害−低欺凌−稳定组 | 1.21*** | −0.02* | −0.001 | 1.13*** | 0.01 | −0.004*** |
表5 网络欺凌受害−网络欺凌的联合发展轨迹各类别截距与斜率的参数值
发展轨迹类别 | 网络欺凌受害 | 网络欺凌 | |||||
截距 | 斜率 | 曲线斜率 | 截距 | 斜率 | 曲线斜率 | ||
中受害−低欺凌−上升组 | 1.63*** | −0.41*** | 0.14*** | 1.34*** | −0.22*** | 0.11*** | |
低受害−低欺凌−稳定组 | 1.21*** | −0.02* | −0.001 | 1.13*** | 0.01 | −0.004*** |
曹晓琪, 田苗, 宋雅琼, 李甄娅, 王庆文, 王莉. 大学生遭受网络欺凌与抑郁的相关性. 中国学校卫生, 2020, 41 (2): 235- 238.
DOI |
|
褚晓伟, 周宗奎, 范翠英. 同伴拒绝与网络欺负的关系: 愤怒的中介作用和感知匿名性的调节作用. 心理发展与教育, 2020, 36 (5): 584- 593. | |
纪晓宁, 岸本鹏子, 王文映, 唐艳, 陈祉妍, 丁欣放. 高职专科学生网络欺凌受害与情绪性进食的纵向联系: 身体不满与自尊的链式中介作用. 心理与行为研究, 2023, 21 (2): 224- 230.
DOI |
|
石慧芬, 范翠英, 褚晓伟, 张雪晨, 吴玲玲. 青少年网络受欺负与网络欺负: 攻击规范信念与自我控制双系统的作用. 心理科学, 2020, 43 (5): 1117- 1124. | |
汤丹丹, 温忠麟. 共同方法偏差检验: 问题与建议. 心理科学, 2020, 43 (1): 215- 223. | |
唐丽丽, 夏凌翔, 杜欣蔚, 赵永萍. 大学生网络欺凌调查表中文版的信度与效度分析. 中华行为医学与脑科学杂志, 2022, 31 (3): 267- 272.
DOI |
|
张文新. 欺凌的界定: 文化和发展的视角. 心理发展与教育, 2023, 39 (4): 590- 598. | |
Agnew, R.. Foundation for a general strain theory of crime and delinquency. Criminology, 1992, 30 (1): 47- 88.
DOI |
|
Alrajeh, S. M., Hassan, H. M., Al-Ahmed, A. S., & Alsayed Hassan, D.. An investigation of the relationship between cyberbullying, cybervictimization and depression symptoms: A cross sectional study among university students in Qatar. PLoS One, 2021, 16 (12): e0260263.
DOI |
|
Berlin, K. S., Parra, G. R., & Williams, N. A.. An introduction to latent variable mixture modeling (part 2): Longitudinal latent class growth analysis and growth mixture models. Journal of Pediatric Psychology, 2014, 39 (2): 188- 203.
DOI |
|
Bongers, I. L., Koot, H. M., van der Ende, J., & Verhulst, F. C.. Developmental trajectories of externalizing behaviors in childhood and adolescence. Child Development, 2004, 75 (5): 1523- 1537.
DOI |
|
Breuer, J., & Elson, M. (2017). Frustration-aggression theory. In P. Sturmey (Ed.), The Wiley handbook of violence and aggression (pp. 1–12). Chichester, United Kingdom: Wiley Blackwell. | |
Cénat, J. M., Smith, K., Hébert, M., & Derivois, D.. Cybervictimization and suicidality among French undergraduate students: A mediation model. Journal of Affective Disorders, 2019, 249, 90- 95.
DOI |
|
Chen, L., Ho, S. S., & Lwin, M. O.. A meta-analysis of factors predicting cyberbullying perpetration and victimization: From the social cognitive and media effects approach. New Media & Society, 2017, 19 (8): 1194- 1213. | |
Chu, X. W., Fan, C. Y., Liu, Q. Q., & Zhou, Z. K.. Cyberbullying victimization and symptoms of depression and anxiety among Chinese adolescents: Examining hopelessness as a mediator and self-compassion as a moderator. Computers in Human Behavior, 2018, 86, 377- 386.
DOI |
|
Coyle, S., Cipra, A., & Rueger, S. Y.. Bullying types and roles in early adolescence: Latent classes of perpetrators and victims. Journal of School Psychology, 2021, 89, 51- 71.
DOI |
|
Crosslin, K., & Golman, M.. “Maybe you don’t want to face it”—College students’ perspectives on cyberbullying. Computers in Human Behavior, 2014, 41, 14- 20.
DOI |
|
Finkel, E. J., & Slotter, E. B.. An I3 Theory analysis of human sex differences in aggression. Behavioral and Brain Sciences, 2009, 32 (3–4): 279. | |
Francisco, S. M., Veiga Simão, A. M., Ferreira, P. C., & Martins, M. J. D. D.. Cyberbullying: The hidden side of college students. Computers in Human Behavior, 2015, 43, 167- 182.
DOI |
|
Kim, J. E., & Kim, J.. International note: Teen users’ problematic online behavior: Using panel data from South Korea. Journal of Adolescence, 2015, 40 (1): 48- 53.
DOI |
|
Kim, Y., Wang, Y., & Oh, J. (2016). Digital media use and social engagement: How social media and smartphone use influence social activities of college students. Cyberpsychology, Behavior, and Social Networking, 19(4), 264–269. | |
Kowalski, R. M., Limber, S. P., & McCord, A.. A developmental approach to cyberbullying: Prevalence and protective factors. Aggression and Violent Behavior, 2019, 45, 20- 32.
DOI |
|
Kumar, V. L., & Goldstein, M. A.. Cyberbullying and adolescents. Current Pediatrics Reports, 2020, 8 (3): 86- 92.
DOI |
|
Lowry, P. B., Zhang, J., Wang, C., & Siponen, M.. Why do adults engage in cyberbullying on social media? An integration of online disinhibition and deindividuation effects with the social structure and social learning model. Information Systems Research, 2016, 27 (4): 962- 986.
DOI |
|
Lozano-Blasco, R., Cortés-Pascual, A., & Latorre-Martínez, M. P.. Being a cybervictim and a cyberbully−The duality of cyberbullying: A meta-analysis. Computers in Human Behavior, 2020, 111, 106444.
DOI |
|
Martínez-Monteagudo, M. C., Delgado, B., García-Fernández, J. M., & Ruíz-Esteban, C.. Cyberbullying in the university setting. Relationship with emotional problems and adaptation to the university. Frontiers in Psychology, 2020, 10, 3074- 3074.
DOI |
|
Nixon, C. (2014). Current perspectives: The impact of cyberbullying on adolescent health. Adolescent Health, Medicine and Therapeutics, 5, 143–158. | |
Nylund, K. L., Asparouhov, T., & Muthén, B. O.. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 2007, 14 (4): 535- 569.
DOI |
|
O’Neill, K. K.. Adolescence, empathy, and the gender gap in delinquency. Feminist Criminology, 2020, 15 (4): 410- 437.
DOI |
|
Peter, I. K., & Petermann, F.. Cyberbullying: A concept analysis of defining attributes and additional influencing factors. Computers in Human Behavior, 2018, 86, 350- 366.
DOI |
|
Quintana-Orts, C., & Rey, L. (2018). Forgiveness and cyberbullying in adolescence: Does willingness to forgive help minimize the risk of becoming a cyberbully? Computers in Human Behavior, 81, 209–214. | |
Romera, E. M., Ortega-Ruiz, R., Runions, K., & Camacho, A.. Bullying perpetration, moral disengagement and need for popularity: Examining reciprocal associations in adolescence. Journal of Youth and Adolescence, 2021, 50 (10): 2021- 2035.
DOI |
|
Shaikh, F. B., Rehman, M., & Amin, A.. Cyberbullying: A systematic literature review to identify the factors impelling university students towards cyberbullying. IEEE Access, 2020, 8, 148031- 148051.
DOI |
|
Sumter, S. R., Baumgartner, S. E., Valkenburg, P. M., & Peter, J.. Developmental trajectories of peer victimization: Off-line and online experiences during adolescence. Journal of Adolescent Health, 2012, 50 (6): 607- 613.
DOI |
|
Swearer, S. M., & Hymel, S. (2015). Understanding the psychology of bullying: Moving toward a social-ecological diathesis-stress model. American Psychologist, 70(4), 344–353. | |
Viau, S. J., Denault, A. S., Dionne, G., Brendgen, M., Geoffroy, M. C., Côté, S., ... Boivin, M.. Joint trajectories of peer cyber and traditional victimization in adolescence: A look at risk factors. The Journal of Early Adolescence, 2020, 40 (7): 936- 965.
DOI |
|
Walters, G. D. (2021). School-age bullying victimization and perpetration: A meta-analysis of prospective studies and research. Trauma, Violence, & Abuse, 22(5), 1129–1139. | |
Wang, L., & Ngai, S. S. Y.. The effects of anonymity, invisibility, asynchrony, and moral disengagement on cyberbullying perpetration among school-aged children in China. Children and Youth Services Review, 2020, 119, 105613.
DOI |
|
Wong, R. Y. M., Cheung, C. M. K., & Xiao, B.. Does gender matter in cyberbullying perpetration? An empirical investigation. Computers in Human Behavior, 2018, 79, 247- 257.
DOI |
|
Yang, F. (2021). Coping strategies, cyberbullying behaviors, and depression among Chinese netizens during the COVID-19 pandemic: A web-based nationwide survey. Journal of Affective Disorders, 281, 138–144. | |
Yoo, C. (2021). What are the characteristics of cyberbullying victims and perpetrators among South Korean students and how do their experiences change? Child Abuse & Neglect, 113, 104923. | |
Zhao, L. J., & Yu, J. J. (2021). A meta-analytic review of moral disengagement and cyberbullying. Frontiers in Psychology, 12, 681299. | |
Zhou, Y. Y., Zheng, H., Liang, Y. M., Wang, J. Z., Han, R., & Liu, Z. K. (2022). Joint developmental trajectories of bullying and victimization from childhood to adolescence: A parallel-process latent class growth analysis. Journal of Interpersonal Violence, 37(3–4), NP1759–NP1783. | |
Zhu, C. Y., Huang, S. Q., Evans, R., & Zhang, W. (2021). Cyberbullying among adolescents and children: A comprehensive review of the global situation, risk factors, and preventive measures. Frontiers in Public Health, 9, 634909. | |
Zsila, Á., Urbán, R., Griffiths, M. D., & Demetrovics, Z. (2019). Gender differences in the association between cyberbullying victimization and perpetration: The role of anger rumination and traditional bullying experiences. International Journal of Mental Health and Addiction, 17(5), 1252–1267. | |
Zych, I., Farrington, D. P., & Ttofi, M. M. (2019). Protective factors against bullying and cyberbullying: A systematic review of meta-analyses. Aggression and Violent Behavior, 45, 4–19. |
[1] | 巩彦斌, 杨海波. 体育锻炼与大学生智能手机成瘾的关系:创新行为和心理健康的链式中介作用[J]. 心理与行为研究, 2023, 21(6): 770-775. |
[2] | 张野, 刘致宏, 鞠萍, 杨硕, 于涛. 感知校园氛围与初中生网络欺凌行为的关系:越轨同伴交往的中介和亲子亲合的调节作用[J]. 心理与行为研究, 2023, 21(6): 792-798. |
[3] | 占友龙, 江雪芬, 刘长林, 刘旭, 谭千保. 大学生自我担当对道德困境下亲社会行为意愿的影响:自我效能感和预期自豪的链式中介作用[J]. 心理与行为研究, 2023, 21(6): 839-845. |
[4] | 李文福, 刘燕, 段熙明, 牛四方, 许瑞雪, 慕福芹. 反刍思维量表在不同性别和抑郁症状医学院校新生中的测量等值性[J]. 心理与行为研究, 2023, 21(6): 854-860. |
[5] | 张斌, 张安琪, 邱致燕, 曾奕欣, 曾成伟, 熊思成, 张淑君, 王亚楠. 青少年早期限制性饮食的发展轨迹:基于潜变量混合增长模型的分析[J]. 心理与行为研究, 2023, 21(5): 621-628. |
[6] | 刘海东, 虞芷筠, 叶宝娟, 杨强. 家庭亲密度与大学生抑郁:社交焦虑和感恩的作用[J]. 心理与行为研究, 2023, 21(4): 556-563. |
[7] | 姚成奎, 常思琪, 郑传章, 陈维, 程刚, 罗杰. 简式大学生心理素质问卷的测量不变性[J]. 心理与行为研究, 2023, 21(3): 312-319. |
[8] | 吴旻, 宋文琦, 鞠佳雯. 父母粗暴养育与儿童睡眠质量的关系:核心自我评价和消极情绪的中介作用[J]. 心理与行为研究, 2023, 21(3): 344-351. |
[9] | 李丹枫, 闫星如, 刘倩. 大学生耐挫心理常模的制定—以北京市为例[J]. 心理与行为研究, 2023, 21(3): 381-387. |
[10] | 纪晓宁, 岸本鹏子, 王文映, 唐艳, 陈祉妍, 丁欣放. 高职专科学生网络欺凌受害与情绪性进食的纵向联系:身体不满与自尊的链式中介作用[J]. 心理与行为研究, 2023, 21(2): 224-230. |
[11] | 黄亚娟, 董蕊, 杨震, 康凯月, 许欣. 特质正念与专业运动员心理健康:链式中介作用及性别差异[J]. 心理与行为研究, 2023, 21(2): 273-279. |
[12] | 兰泽波, 宋子明, 姜琨, 闫国利. 听障大学生汉语阅读中的绕口令效应:口语经验和阅读能力的影响[J]. 心理与行为研究, 2023, 21(1): 20-27. |
[13] | 谢云天, 孟凡斐. 初中生数学元认知的发展轨迹:两年半追踪研究[J]. 心理与行为研究, 2023, 21(1): 58-64. |
[14] | 刘燊, 洪新伟, 赵明玉, 宋明华. 自我厌恶与大学生同伴关系:抑郁和社会支持的链式中介作用[J]. 心理与行为研究, 2023, 21(1): 102-108. |
[15] | 陈君楣, 吕勇. 自我同情对大学生拖延行为的影响:经验回避和羞耻的链式中介作用[J]. 心理与行为研究, 2023, 21(1): 109-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||